From mid-April to mid-May, we collaborated with our friends at the Open Knowledge Foundation to launch the “Data Explorer Mission” using the Mechanical MOOC platform. The Mechanical MOOC was built to form more intimate small learning groups around open educational resources. This was the first time we had used it for team-based projects with synchronous meetings. Here are our findings from the experiment.
Our findings consist of 3 main datasets:
In our 13 groups, we tracked how many emails Agents sent to each other. The results were quite surprising:
The full dataset for this chart can be found here: http://ow.ly/m1YCp
You’ll notice that most groups emailed each other around 30 times. Two groups, Group 1 and Group 10 emailed each other more than 220 times over the trajectory of the course. What made these groups different?
Since this was our first collaborative, project-based Mechanical MOOC project, we approached it as a pilot. As such, the 3 support folks behind Mission Control masqueraded in all of the groups as they evolved. To find out what set Groups 1 and 10 apart, we combed through the content of those conversations. This is what we found:
Upon closer inspection, many of these emails discussed trying to find a time to meet. After the first 10 days, the conversation dropped off, so these results are inflated.
In looking at the conversations from the most successful Team, several fascinating trends emerged that led to Team 10 to build social presence and cohere as a group.
What’s notable about Team 10’s interactions is that all four of the core group members were about equally active–this is an example of true group facilitation. We’ll recommend using Team 10’s interactions as a model or a roadmap for future Mechanical MOOC projects.
It’s also worth noting that 3 groups continued to email each other after the course officially ended. Even if they had not finished the project, they had built a community around data, and continued to share resources and review each other’s work.
This made us realize that perhaps we should experiment with time, or folks should be able to progress at their own pace. Another realization was that we should keep the small listservs up so that people can continue to tap their small learning community.
After the Mission ended, we surveyed Agents about what they felt they learned in the Mission, which tools were most valuable, and about their level of satisfaction with the experience. In the results, we found that many respondents were looking for a more traditional, direct instruction MOOC experience. We need to make the peer learning approach clearer–that Agents were in charge of directing their own learning, that expertise would emerge from working together as a group, and not from an Instructor or a series of Teaching Assistants. This is important, because the Teams that embraced the peer learning approach fared far better in the Data Mission:
As mentioned above, participants who had yet to be “onboarded” to peer learning expressed frustration at the lack of structure and direction in the experience:
Data collection. We’ll admit candidly: we were learning along with the Data Agents. This was one of Peer 2 Peer University’s first attempts at using Mailgun to track engagement, and there are a few things we could do better. In the future, we will use the “Campaigns” feature to drill down into per group and per user opens / click throughs / replies to the group. We also struggled to get an export of the engagement data on a more regular basis, which would have helped us support groups that were flagging.
Sample size. With a pilot of 150 folks, Teams of Data Agents were spread thin across the world. Some groups, like those in Fiji or Australia, got placed with the nearest-by folks–sometimes 3-4 hours away. With a larger group, Teams will have more local folks in their Mission.
From our pilot experience and lessons learned, we’ll be running another iteration of the Data Explorer Mission in August that will include a clear onboarding process for peer learning, stronger support for facilitation, and integrating the “Ask School of Data” to support Agents who have questions their Team cannot answer. Stay tuned for more details.
]]>This post comes to you from Anna Sakoyan, who participated as a “Data Agent” the Data Explorer Mission, a partnership between Peer 2 Peer University and the Open Knowledge Foundation. The course ran from mid-April to mid-May, and primed Agents to analyze, clean, visualize data, tell a story with it, and facilitate their group. Here is her story. The original post can be found at her blog, Self Made University.
I can hardly believe it, but my assignment at School of Data seems to be completed. The last step was to produce some output, that is to tell the story. Now I think I should somehow summarize my experience.
Now, first off, what is Data Expedition at School of Data? It can be very flexible in terms of organisation. Here are the links to the general description and also to the Guide for Guides, which is revealing. In this post, I’ll be talking about this particular expedition. Also, a great account of it can be found on one of my team mates’ blog. So, this expedition was technically very similar to the principle of Python Mechanical MOOC. All the instructions were sent by a robot via our mailing list and then we had to collaborate with our team mates to find solutions.
(Image CC-By-SA J Brew on Flickr)
First of all, we were given a dataset on CO2 emissions by country and CO2 emissions per capita. Our task was to look at the data and try to think about what can be done about it. As a background, we were also given the Guardian article based on this very dataset so that we could have a look at a possible approach. Well, I can’t say I was able to do the task right away. Without any experience of working
with data or any tools to deal with it, I felt absolutely frustrated by the very look of a spreadsheet. And at that stage peers could hardly provide any considerable technical support, because we all were newbies.
Then we had tasks to clean and format the data in order to analyze certain angles. Here our cooperation began and became really helpful. Although nobody among us was an expert here, we were all looking for the solutions and shared our experience, even when it was little more than ‘I DON’T UNDERSTAND ANYTHING!!11!!1!’.
Our chief weapons were:
And that is it actually. I’m not mentioning more individual choices, because I’m not sure I even know about them all.
Now some credits.
Irina, you’ve been a source of wonderful links that really broadened my understanding of what’s going on. And above all, you’re extremely encouraging.
Jakes, you’ve contributed a huge amount of effort to get the things going and I think it paid off. You have also always been very supportive, generous and helpful even beyond the immediate team agenda.
Ketty, you were the first among us who was brave enough to face the spreadsheet as it is and proved that it is actually possible to work with. I was really inspired by this and tried to follow suit. Same was in the case of Google Fusion Tables.
Randah, I wish you had had more time at your disposal to participate in the teamwork. And judging by your brief inputs, you would make a great team mate. You were also the person who coined the term dataphobia and in this way located the problem I resolved to overcome. I hope to get in touch with you again when you have more spare time.
Zoltan, you were also an upsettingly rare contributor, due to your heavy and unpredictable workload. But nevertheless, you managed to provide an example of a very cool approach to overcoming big problems just by mechanically splitting them into smaller and less scary pieces.
Vanessa Gennarelli and Lucy Chambers, thanks for organising this wonderful MOOC!
So, as a result, I
Well, this is kind of more than I expected.
Next, I’m going to learn more about data processing, Python, P2P-learning and other awesome things.
]]>We provide multiple pathways to learning here at P2PU–if visual is your thing, here’s the walkthrough of Data Explorer Missions on our Community Call (start around minute 19:00):
Last year Peer 2 Peer University and the Open Knowledge Foundation launched an initiative to to meet the global demand for data-wrangling skills–enter the School of Data. Over the course of the past few months, Lucy Chambers, Neil Ashton and I designed a pilot “Data Explorer Mission” that we just launched on April 15th. We’re in the third week of that project now, and here’s a window into how it works.
Four-week long course, running from April 15 to mid-May
130 signups for our initial pilot
Our Mechanical MOOC email grouping mechanism formed 13 groups by time zone
The course features 5 Badges on our new platform (http://badges.p2pu.org) and it’s our first time implementing Badges for a Mechanical MOOC project
Mechanical MOOC put together 13 groups of 10 learners (or team of “Data Agents”) based on time zone.
Each week Data Agents receive 2 emails from “Mission Control”–one email with a project and resources on Tuesday, and one email with directions for their Google Hangout on Friday.
The learning project asks Agents to examine a CO2 dataset, ask a question, and then clean, refine, visualize and tell a story about their exploration.
As a Data Agent, your first Mission, should you choose to accept it, would begin Monday, April 15. That gives you only 3 more days to sign up for this innovative partnership between the Open Knowledge Foundation and Peer to Peer University. Read on for more details.…
Image CC-By-SA J Brew on Flickr
At the School of Data, we teach in two ways.
1) By producing materials to help people tackle working with data and
2) By running Data Expeditions – where learners tackle a problem, answer a question or work on a project together, learning from one another as they get hands on with real data.
It’s come to our attention, that sometimes, it’s handy to combine the two – handing people materials to tackle the challenges they are likely to encounter along the way. The Data Explorer Mission is like a data expedition with one crucial difference: your guide is a robot…
Read on to learn more…
Learn how to tinker with, refine and tell a story with data in this 4-week course. Each week you’ll be commissioned to work with others on a project that will hone your data-wrangling skills. Lessons will be pulled from Open Knowledge Foundation and Tactical Tech with help from Peer 2 Peer University. At the end of the course, you will have finessed, wrangled, cleaned and visualized a data set and shared it with the world.
The course will run April 15 to May 3, and each week your team will receive weekly “Missions” from Mission Control over email. You’ll work together on those projects, including a 30-minute Google Hangout each week. Each “Mission” will lead up to your final project. For each skill you master in the course, you can earn a Badge to show your mastery and to get feedback to further your talents.
Carbon Emissions. Don’t worry if you don’t know anything about them at the moment, you don’t need to be a topic expert and the data skills you will learn will be very transferrable to other areas!
No prior experience is required, we’ll cover spreadsheets and working with data. If you’re more advanced, you are also welcome to join us to hone your skills, and the only limit on what you can learn is your imagination – so if you’re prepared to push yourselves on the project front the data-skills-bucket is your oyster!
Normally – Data Expeditions are guided by a human sherpa, in this course, we’re weaving School of Data course material with a robot sherpa to help guide participants through the phases of the expedition. You’ll need to listen out for Mission Control’s instructions to guide you through the phases, keep timing and look out for handy tips, but organising your team is up to your group…
Sign up by completing the form below!
]]>Image CC-By-SA J Brew on Flickr
At the School of Data, we teach in two ways.
1) By producing materials to help people tackle working with data and
2) By running Data Expeditions – where learners tackle a problem, answer a question or work on a project together, learning from one another as they get hands on with real data.
It’s come to our attention, that sometimes, it’s handy to combine the two – handing people materials to tackle the challenges they are likely to encounter along the way. The Data Explorer Mission is like a data expedition with one crucial difference: your guide is a robot…
Read on to learn more…
Learn how to tinker with, refine and tell a story with data in this 4-week course. Each week you’ll be commissioned to work with others on a project that will hone your data-wrangling skills. Lessons will be pulled from Open Knowledge Foundation and Tactical Tech with help from Peer 2 Peer University. At the end of the course, you will have finessed, wrangled, cleaned and visualized a data set and shared it with the world.
The course will run April 15 to May 3, and each week your team will receive weekly “Missions” from Mission Control over email. You’ll work together on those projects, including a 30-minute Google Hangout each week. Each “Mission” will lead up to your final project. For each skill you master in the course, you can earn a Badge to show your mastery and to get feedback to further your talents.
Carbon Emissions. Don’t worry if you don’t know anything about them at the moment, you don’t need to be a topic expert and the data skills you will learn will be very transferrable to other areas!
No prior experience is required, we’ll cover spreadsheets and working with data. If you’re more advanced, you are also welcome to join us to hone your skills, and the only limit on what you can learn is your imagination – so if you’re prepared to push yourselves on the project front the data-skills-bucket is your oyster!
Normally – Data Expeditions are guided by a human sherpa, in this course, we’re weaving School of Data course material with a robot sherpa to help guide participants through the phases of the expedition. You’ll need to listen out for Mission Control’s instructions to guide you through the phases, keep timing and look out for handy tips, but organising your team is up to your group…
Sign up by completing the form below!